ANTIOKSIDATIVNI ODGOVOR BILJAKA KUKURUZA NA STRES IZAZVAN SOLJU
DOI:
https://doi.org/10.7251/ASB230402013PKljučne reči:
salinitet, ZP 555, proteini, GSH, POX, APX, CATApstrakt
Cilj rada je bio da se ispita uticaj povećane koncentracije NaCl na koncentraciju proteina i antioksidativni sistem korijena i listova kukuruza. Biljke kukuruza (hibrid ZP 555) su gajene hidroponično i tretirane sa NaCl u koncentracijama od 50 i 150 mM tokom šest dana.
Od antioksidativnih parametara određeni su: koncentracija glutationa (GSH) i aktivnost antioksidativnih enzima: peroksidaze klase III (POX, EC 1.11.1.7), askorbat peroksidaza (APX, EC 1.11.1.11) i katalaza (CAT, EC 1.11.1.6). Nakon tretmana sa 50 mM NaCl, koncentracija proteina u listu i korijenu se smanjila, dok je nakon tretmana sa 150 mM NaCl izmjereno povećanje koncentracija proteina, ali samo u listu. Povećanje koncentracije GSH detektovano je za obje koncentracije NaCl u listu, a u korijenu samo za nižu koncentraciju, u poređenju sa kontrolom. Aktivnost POX je značajno porasla samo u listovima tretiranim sa 150 mM NaCl, dok je pri nižoj koncentraciji aktivnost POX smanjena, kako u listovima kukuruza tako i u korijenu. Pet izoformi rPOX detektovano je nativnom gel elektroforezom u kontroli, dok izoforma rPOX5 nije detektovana u tretiranim uzorcima. Dvije lPOX izoforme su detektovane u kontrolnim i tretiranim uzorcima lista. Nativna elektroforeza je pokazala prisustvo jedne CAT izoforme samo u listovima, i u kontrolnim i u tretiranim uzorcima. Najveća CAT aktivnost je izmjerena pri nižoj koncentraciji NaCl. Na osnovu dobijenih rezultata može se zaključiti da salinitet mijenja antioksidativni sistem u listovima i korijenu kukuruza. Pored toga, na osnovu mjerenih parametara može se zaključiti da hibrid ZP 555 ima umjerenu tolerantnost na ispitivane nivoe saliniteta.
Reference
AbdElgawad, H., Zinta, G., Hegab, M. M., Pandey, R., Asard, H., & Abuelsoud, W. (2016). High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Frontiers in Plant Science, 7,276. https://doi.org/10.3389/fpls.2016.00276
Aebi, H. (1974). Catalae. In H. U. Bergmeyer (Ed.), Methods of enzymatic analysis 2 (pp. 673-684). New York, London: Academic press. https://doi.org/10.1016/B978-0- 12-091302-2.X5001-4
Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G., & Sharma, S. (2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology, 30(3), 161-175. https://doi.org/10.3109/07388550903524243
de Azevedo Neto, A. D., Prisco, J. T., Enéas-Filho, J., de Abreu, C. E. B., & Gomes-Filho, E. (2006). Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany, 56(1), 87-94. https://doi.org/10.1016/j.envexpbot.2005.01.008
Azooz, M. M., Ismail, A. M., & Elhamd, M. A. (2009). Growth, lipid peroxidation and antioxidant enzyme activities as a selection criterion for the salt tolerance of maize cultivars grown under salinity stress. International Journal of Agriculture & Biology, 11(1), 21-26.
Carrasco-Ríos, L., & Pinto, M. (2014). Effect of salt stress on antioxidant enzymes and lipid peroxidation in leaves in two contrasting corn,’Lluteno’and’Jubilee’. Chilean Journal of Agricultural Research, 74(1), 89-95. http://dx.doi.org/10.4067/S0718-58392014000100014
Esfandiari, E., & Gohari, G. (2017). Response of ROS-scavenging systems to salinity stress in two different wheat (Triticum aestivum L.) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 45(1), 287-291. https://doi.org/10.15835/nbha45110682
Eyer, P., Worek, F., Kiderlen, D., Sinko, G., Stuglin, A., Simeon-Rudolf, V., & Reiner, E. (2003). Molar absorption coefficients for the reduced Ellman reagent: reassessment. Analytical biochemistry, 312(2), 224-227. https://doi.org/10.1016/S0003-2697(02)00506-7
Foyer, C. H., Theodoulou, F. L., & Delrot, S. (2001). The functions of inter-and intracellular glutathione transport systems in plants. Trends in Plant Science, 6(10), 486-492. https://doi.org/10.1016/S1360-1385(01)02086-6
Gill, S. S., Anjum, N. A., Hasanuzzaman, M., Gill, R., Trivedi, D. K., Ahmad, I., Pereira, E., & Tuteja, N. (2013). Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations. Plant Physiology and Biochemistry, 70, 204-212. https://doi.org/10.1016/j.plaphy.2013.05.032
Gray, J. S., & Montgomery, R. (2003). Purification and characterization of a peroxidase from corn steep water. Journal of Agricultural and Food Chemistry, 51(6), 1592-1601. https://doi.org/10.1021/jf025883n
Hussain, S., Rao, M. J., Anjum, M. A., Ejaz, S., Zakir, I., Ali, M. A., Ahmad, N., & Ahmad, S. (2019). Oxidative stress and antioxidant defense in plants under drought conditions. In M. Hasanuzzaman, K. Hakeem, K. Nahar & H. Alharby (Eds.), Plant abiotic stress tolerance (pp. 207-219). Springer: Cham. https://doi.org/10.1007/978-3-030-06118-0_
Koo, J. S., Choo, Y. S., & Lee, C. B. (2007). Changes in ROS-Scavenging Enzyme Activity in Rice (Oryza sativa L.) Exposed to High Salinity. Journal of Ecology and Environment, 30(4), 307-314. https://doi.org/10.5141/JEFB.2007.30.4.307
Kukavica, B. M., Veljovicć-Jovanovicć, S. D., Menckhoff, L., & Lüthje, S. (2012). Cell wall- bound cationic and anionic class III isoperoxidases of pea root: biochemical characterization and function in root growth. Journal of Experimental Botany, 63(12), 4631-4645. https://doi.org/10.1093/jxb/ers139
Kuvelja, A., Davidović-Plavšić, B., Lukić, D., Gajić, N., Žabić, M., Škondrić, S., & Kukavica, B. (2021). Impact of nicosulfuron on biochemical markers of oxidative stress in maize leaves and roots. Biljni lekar, 49(2), 201-217. https://doi.org/10.5937/biljlek2102201k
Lopez-Huertas, E., Charlton, W. L., Johnson, B., Graham, I. A., & Baker, A. (2000). Stress induces peroxisome biogenesis genes. The EMBO Journal, 19(24), 6770-6777. https://doi.org/10.1093/emboj/19.24.6770
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265-275. PMID: 14907713
Lukić, N., Trifković, T., Kojić, D., & Kukavica, B. (2021). Modulations of the antioxidants defence system in two maize hybrids during flooding stress. Journal of Plant Research, 134(2), 237-248. https://doi.org/10.1007/s10265-021-01264-w
Menezes-Benavente, L., Kernodle, S. P., Margis-Pinheiro, M., & Scandalios, J. G. (2004). Salt- induced antioxidant metabolism defenses in maize (Zea mays L.) seedlings. Redox Report, 9(1), 29-36. https://doi.org/10.1179/135100004225003888
Miyake, C., & Asada, K. (1992). Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. Plant and Cell Physiology, 33(5), 541-553. https://doi.org/10.1093/oxfordjournals.pcp.a078288
Pandey, V. P., Awasthi, M., Singh, S., Tiwari, S., & Dwivedi, U. N. (2017). A comprehensive review on function and application of plant peroxidases. Biochemistry & Analytical Biochemistry, 6(1), 308. DOI: 10.4172/2161-1009.1000308
Polidoros, A. N., & Scandalios, J. G. (1999). Role of hydrogen peroxide and different classes of antioxidants in the regulation of catalase and glutathione S‐transferase gene expression in maize (Zea mays L.). Physiologia Plantarum, 106(1), 112-120. https://doi.org/10.1034/j.1399-3054.1999.106116.x
Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, 217037. https://doi.org/10.1155/2012/217037
Singh, A., Bhushan, B., Gaikwad, K., Yadav, O. P., Kumar, S., & Rai, R. D. (2015). Induced defence responses of contrasting bread wheat genotypes under differential salt stress imposition. Indian Journal of Biochemistry and Biophysics, 52(1), 75-85. PMID: 26040114
Stepien, P., & Klobus, G. (2005). Antioxidant defense in the leaves of C3 and C4 plants under salinity stress. Physiologia Plantarum, 125(1), 31-40. https://doi.org/10.1111/j.1399- 3054.2005.00534.x
Štolfa, I., Pfeiffer, T. Ž., Špoljarić, D., Teklić, T., & Lončarić, Z. (2015). Heavy metal-induced oxidative stress in plants: Response of the antioxidative system. In D. Gupta, J. Palma & F. Corpas (Eds.), Reactive oxygen species and oxidative damage in plants under stress (pp. 127-163). Cham: Springer. https://doi.org/10.1007/978-3-319-20421-5_6
Veljović Jovanović, S., Kukavica, B., Vidović, M., Morina, F., & Menckhoff, L. (2018). Class III peroxidases: Functions, localization and redox regulation of isoenzymes. In D. Gupta, J. Palma & F. Corpas (Eds.), Antioxidants and antioxidant enzymes in higher plants (pp. 269-300). Cham: Springer. https://doi.org/10.1007/978-3-319-75088-0_13
Villalpando-Rodriguez, G. E., & Gibson, S. B. (2021). Reactive oxygen species (ROS) regulates different types of cell death by acting as a rheostat. Oxidative Medicine and Cellular Longevity, 2021, 9912436. https://doi.org/10.1155/2021/9912436
Wang, M., Gong, S., Fu, L., Hu, G., Li, G., Hu, S., & Yang, J. (2022). The involvement of antioxidant enzyme system, nitrogen metabolism and osmoregulatory substances in alleviating salt stress in inbred maize lines and hormone regulation mechanisms. Plants, 11(12), 1547. https://doi.org/10.3390/plants11121547
Wang, Y., Jia, D., Guo, J., Zhang, X., Guo, C., & Yang, Z. (2017). Antioxidant metabolism variation associated with salt tolerance of six maize (Zea mays L.) cultivars. Acta Ecologica Sinica, 37(6), 368-372. https://doi.org/10.1016/j.chnaes.2017.08.007