BIOCHEMICAL RESPONSES OF PURE AND MIXED FUNGAL CULTURES ISOLATED FROM WASTE WATER TO THE PRESENCE OF SODIUM TRIPOLIPHOSPHATES
DOI:
https://doi.org/10.7251/SKP201101019JKljučne reči:
natrijum tripolifosfat, pH, redoks potencijal, proteolitička aktivnost, T. viride,, G. candidum, mješovita kulturaApstrakt
Natrijum tripolifosfat (Sodium tripolyphosphate STPP) ima široku primjenu u različitim industrijskim procesima, ali uglavnom kao bilder u proizvodima za čišćenje u domaćinstvima. Upotreba STPP povezana je sa ekološkim problemom poznatim kao eutrofikacija. Sa ekološke tačke gledišta, važno je identifikovati mikroorganizme koji imaju sposobnost redukcije STPP iz okoline. U ovom radu je ispitivan hemijski i biohemijski odgovor čistih kultura T. viride i G. candidum i njihove mješovite kulture na prisustvo STPP u koncentraciji 0,5% tokom 8 dana kultivacije u tečnoj hranljivoj podlozi. Sa tim u vezi su ispitivane promjene vrijednosti pH, redoks potencijala, proteolitičke aktivnosti tečnih podloga i ukupne suve mase biomase (dry weight biomass DWB) kultura. Dodatak STPP hranljivoj podlozi uticao je na povećanje početnih vrijednosti pH i smanjenje vrijednosti redoks potencijala u poređenju sa kontrolom. STPP je imao inhibitorno dejstvo na aktivnost proteaza svih kultura: T. viride (3,60%), mješovita kultura (9,77%) i G. candidum (60,33%). Suva biomasa (DWB) T. viride bila je blago inhibirana (1,06%), dok je DWB G. candidum (0,58%) i mješovite kulture (9,53%) blago i srednje stimulisana STPP. Rezultati dobijeni u ovoj studiji ukazuju na potencijalnu ulogu ispitivanih kultura u uklanjanju polifosfata iz postrojenja za prečišćavanje industrijskih i otpadnih voda i njihovu potencijalnu primjenu u biotehnološkim procesima.
Reference
Achbergerová, L. & Nahálka, J. (2011). Polyphosphate - an ancient energy source and active metabolic regulator. Microbial Cell Factories, 10(63), 1-14. doi:10.1186/1475-2859-10-63
Anson, M. L. (1938). The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. Journal of General Physiology, 22, 79-89. doi: 10.1085/jgp.22.1.79
Barak, Y. & Rijn, J. V. (2000). Relationship between Nitrite Reduction and Active Phosphate Uptake in the Phosphate-Accumulation Denitrifier Pseudomonas sp. Strain JR 12.1.551.601.651.701.751.801.851.90 Dry weight biomass (g) CultureT. viride CT. viride STPP 0.5%G. candidum CG. candidum STPP 0.5%Mixed culture CMixed culture STPP 0.5%Applied and Environment Microbiology, 66, 5236-5240. doi: 10.1128/aem.66.12.5236-5240.2000
Ekama, G. A., Marias, G. R., Siebritz, I. P., Pitman, A. R., Keay, G. P., Buchan, L., Gerber, A., Smollen, M. (1984). Theory, design and operation of nutrient removal activated sludge processes. Pretoria, South Africa: University of Cape Town, City of Johannesburg and the National Institute for Water Research of the CSIR.
Fuhs, G. W. & Chen, M. (1975). Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater. Microbial Ecology, 2, 119-138. doi: 10.1007/BF02010434
Hamilton, J. G., Grosskleg, J., Hilger, D., Bradshaw, K., Carlson, T., Siciliano, S. D., Peak, D. (2018). Chemical speciation and fate of tripolyphosphate after application to a calcareous soil. Geochemical Transaction, 19, 1-11. doi: 10.1186/s12932-017-0046-z
HERA, Human & Environmental Risk Assessment on ingredients of European household cleaning products (2003). Sodium Tripolyphosphate (STPP) (CAS: 7758-29-4). Retrieved from: https://www.heraproject.com/files/13-f-04-%20hera%20stpp%20full%20web%20wd.pdf
Jakovljević, V. (2020). Synergistic effect of Fusarium lateritium LP7 and Trichoderma viride LP5 promotes ethoxylatedoleyl-cetyl alcohol biodegradation. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 55, 438-447. doi:10.1080/10934529.2019.1706334
Jeon, C. O., Lee, D. S. & Parker, J. M. (2003). Microbial communities in activated sludge performing enhanced biological phosphorus removal in sequencing batch reactor. Water Research, 37, 2115-2205. doi:10.1016/S0043-1354(02)00587-0
Jiang, Y. F., Tian, J. & Ge, F. (2020). New insight into carboxylic acid metabolisms and ph regulations during insoluble phosphate solubilisation process by Penicillium oxalicum PSF-4. Current Microbiology, 77, 4095–4103. doi: 10.1007/s00284-020-02238-2.
Kavanaugh, R. G. (1991). Investigation of bacterial populations in a biological nutrient removal system (PhD Dissertation). Virginia, USA: Department of Civil Engineering, Virginia Tech, Blacksburg. Retrieved from: https://vtechworks.lib.vt.edu/bitstream/handle/10919/39828/LD5655.V856_1991.K383.pdf?sequence=1&isAllowed=y
Knabel, S., Walker, H. & Harman, P. (1991). Inhibition of Aspergillus flavus and selected gram-positive bacteria by chelation of essential metal cations by polyphosphates. Journal of Food Protection, 54, 360–365. doi:10.4315/0362-028X-54.5.360
Lima, M. A. B., Nascimento, A. E., Souza, W., Fukushima, K. & Campos-Takaki, G. M. (2003). Effects of phosphorus on polyphosphate accumulation by Cunninghamella elegans. Brazilian Journal of Microbiology, 34, 363-372. doi:10.1590/S1517-83822003000400016
Maier, S. K., Scherer, S. & Loessner, M. J. (1999). Long-chain polyphosphate causes cell lysis and inhibits Bacillus cereus septum formation, which is dependent on divalent cations. Applied and Environment Microbiology, 65, 3942–3949. doi:10.1128/AEM.65.9.3942-3949.1999.
Marsh, S. L. K. (1992). Effects of phosphates on Pseudomonas fragi growth, protease production and activity (Retrospective Theses and Dissertations, 10331), Iowa State:University Capstones. Retrieved from: https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=11330&context=rtd
Momba, M. N. B. & Cloete, T. E. (1996). Biomass relationship to growth and phosphate uptake of Pseudomonas fluorescens, Escherichia coli and Acinetobacter radioresistens in mixed liquor medium. Journal of Industrial Microbiology, 16, 364-369. doi: 10.1007/BF01570117
Oehmen, A., Lemos, P. C., Carvalho, G., Yuan, Z., Keler, J., Blackall, L. L. & Reis, A. M. M. (2007). Advances in enhanced biological phosphorus: from micro to macro scale. Water Research, 41, 2271-2300. doi:10.1016/j.watres.2007.02.030
Petersen, G. K. (1966). Redox measurements: Their Theory and Technique. Copenhagen, Denmark: Radiometer A/S.
Post, F. J., Krishnamurty, G. B. & Flanagan, M. D. (1963). Influence of sodium hexametaphosphate on selected bacteria. Applied Microbiology, 11, 430–435. doi:10.1128/am.11.5.430-435.1963.
Rashid, M. H. & Kornberg, A. (2000). Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. PNAS (Proceedings of the National Academy of Sciences USA), 97(9), 4885-4890. doi:10.1073/pnas.060030097
Rashid, M. H., Rao, N. N. & Kornberg, A. (2000). Inorganic polyphosphate is required for motility of bacterial pathogens. Journal of Bacteriology, 182, 225-227. doi:10.1128/JB.182.1.225-227.2000
Seviour, R. J., Mino, T. & Onuki, M. (2003).The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiology Reviews, 27(1), 99-127. doi:10.1016/S0168-6445(03)00021-4
Shi, X., Yang, L., Niu, X., Xiao, L., Kong, Z., Qin, B., Gao, G. (2003). Intracellular phosphorus metabolism of Microcystis aeruginosa under various redox potential in darkness. Microbiology Research, 158, 345–352. doi: 10.1078/0944-5013-00214
Snaidr, J., Amann, R., Huber, I., Ludwig, W. & Schleifer, K. H. (1997). Phylogenetic analysis and in situ identification of bacteria in activated sludge. Applied and Environmental Microbiology, 67, 2884-2896. Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC168584/pdf/632884.pdf
Venugopal, V., Pansare, A. C. & Lewis, N. F. (1984). Inhibitory Effect of Food Preservatives on Protease Secretion by Aeromonas hydrophila. Journal of Food Science, 49, 1078-1081. doi:10.1111/j.1365-2621.1984.tb10396.x
Weitzman, I., Whittier, S., Mckitrick, J. C. & Della-Latta, P. (1995). Zygospore: the last word in identification of rare and atypical zygomycetes isolated from animal specimens. Journal of Clinical Microbiology, 33, 781-783. doi:10.1128/jcm.33.3.781-783.1995
Zaika, L. & Kim, A. (1993). Effect of sodium polyphosphates on growth of Listeria monocytogenes. Journal of Food Protection, 56, 577–580. doi:10.4315/0362-028X-56.7.577