DOES SEX AFFECT THE GENETIC STRUCTURE OF JACKALS IN NORTHERN LOWLANDS OF BOSNIA AND HERZEGOVINA?

Authors

  • Kristina Hinić University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina Author
  • Ivana Matić University of Novi Sad, Faculty of Sciences, Dositeja Obradovića 2, 21000 Novi Sad, Serbia Author
  • Mihajla Djan University of Novi Sad, Faculty of Sciences, Dositeja Obradovića 2, 21000 Novi Sad, Serbia Author
  • Duško Ćirović University of Belgrade, Faculty of Biology, Studentski trg 16, 11158 Belgrade, Serbia Author
  • Dragana Šnjegota University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina Author

DOI:

https://doi.org/10.63356/asb.2025.004

Keywords:

Bosnia and Herzegovina, Canis aureus, genetic structure, relatedness, sex-biased dispersal

Abstract

Sex-biased dispersal may affect the genetic structure of wild populations, often leading to distinct patterns of relatedness between males and females. We examined this phenomenon in the golden jackal (Canis aureus) population from the northern lowlands of Bosnia and Herzegovina (BiH) by analyzing 36 individuals (18 males and 18 females) using 16 polymorphic microsatellite loci. The population exhibited moderate genetic diversity, consistent with the diversity in the region. Analyses of population structure, including STRUCTURE, PCoA, and pairwise Fst (Fst = 0.004; p = 0.190), revealed no significant genetic differentiation between males and females, suggesting a lack of sex-biased structuring. This pattern may be further explained by recent demographic expansion. Analyses of local relatedness showed that the observed patterns reflect local kinship rather than relatedness determined by sex. Although the corrected Assignment Index (AIc​) indicated a trend consistent with male-biased dispersal, this difference was not statistically significant. However, male dispersal warrants further investigation with an increased sample size and broader sample distribution.

References

Bellemain, E. V. A., Swenson, J. E., Tallmon, D., Brunberg, S. & Taberlet, P. (2005). Estimating population size of elusive animals with DNA from hunter‐collected feces: four methods for brown bears. Conservation biology, 19(1), 150-161. https://doi.org/10.1111/j.1523-1739.2005.00549.x

Bogdanowicz, W., Bilska, A. G., Kleven, O., Aspi, J., Caro, A., Harmoinen, J., ... & Kopatz, A. (2025). Species on the move: a genetic story of three golden jackals at the expansion front. Mammalian Biology, 105(1), 37-48. https://doi.org/10.1007/s42991-024-00452-0

Dray, S. & Dufour, A. B. (2007). The ade4 package: implementing the duality diagram for ecologists. Journal of statistical software, 22, 1-20. https://doi.org/10.18637/jss.v022.i04

Earl, D. A. & VonHoldt, B. M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation genetics resources, 4, 359-361. https://doi.org/10.1007/s12686-011-9548-7

Fabbri, E., Caniglia, R., Galov, A., Arbanasić, H., Lapini, L., Bošković, I., Florijančić, T., Vlasseva, A., Ahmed, A., Mirchev, R. L. & Randi, E. (2014). Genetic structure and expansion of golden jackals (Canis aureus) in the north-western distribution range (Croatia and eastern Italian Alps). Conservation genetics, 15, 187-199. https://doi.org/10.1007/s10592-013-0530-7

Francis, R. M. (2016). POPHELPER: an R package and web app to analyse and visualize population structure. Molecular Ecology Resources, 17(1), 27-32. https://doi.org/10.1111/1755-0998.12509

Girman, D. J., Mills, M. G. L., Geffen, E. & Wayne, R. K. (1997). A molecular genetic analysis of social structure, dispersal, and interpack relationships of the African wild dog (Lycaon pictus). Behavioral Ecology and Sociobiology, 40, 187-198. https://doi.org/10.1007/s002650050332

Goudet, J., Perrin, N. & Waser, P. (2002). Tests for sex‐biased dispersal using bi‐parentally inherited genetic markers. Molecular Ecology, 11(6), 1103-1114. https://doi.org/10.1046/j.1365-294X.2002.01496.x

Greenwood, P. J. (1980). Mating systems, philopatry and dispersal in birds and mammals. Animal behaviour, 28(4), 1140-1162. https://doi.org/10.1016/S0003-3472(80)80103-5

Handley, L. J. & Perrin, N. (2007). Advances in our understanding of mammalian sex‐biased dispersal. Molecular ecology, 16(8), 1559-1578. https://doi.org/10.1111/j.1365-294X.2006.03152.x

Herrero, A., Klütsch, C. F., Holmala, K., Maduna, S. N., Kopatz, A., Eiken, H. G. & Hagen, S. B. (2021). Genetic analysis indicates spatial-dependent patterns of sex-biased dispersal in Eurasian lynx in Finland. PLoS One, 16(2), e0246833. https://doi.org/10.1371/journal.pone.0246833

Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. (2009). Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources, 9(5),1322-1332. https://doi.org/10.1111/j.1755-0998.2009.02591.x

Jombart, T. (2008). adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403-1405. https://doi.org/10.1093/bioinformatics/btn129

Kemenszky, P., Jánoska, F., Nagy, G. & Csivincsik, Á. (2022). The golden jackal (Canis aureus) and the African swine fever pandemic: Its role is controversial but not negligible (a diet analysis study). Veterinary Medicine and Science, 8(1), 97-103. https://doi.org/10.1002/vms3.636

Kryštufek, B., Murariu, D. & Kurtonur, C. (1997). Present distribution of the Golden Jackal Canis aureus in the Balkans and adjacent regions. Mammal Review, 27(2), 109-114. https://doi.org/10.1111/j.1365-2907.1997.tb00375.x

Lucotte, E. A., Laurent, R., Heyer, E., Segurel, L. & Toupance, B. (2016). Detection of allelic frequency differences between the sexes in humans: a signature of sexually antagonistic selection. Genome Biology and Evolution, 8(5), 1489-1500. https://doi.org/10.1093/gbe/evw090

Milenković, M. (1987). The distribution of the jackals, Canis aureus Linnaeus 1758 (Mammalia, Canidae) in Yugoslavia. Proceedings on the Fauna of SR Serbia, 4, 233-248.

Mitchell-Jones, A. J., Amori, G., Bogdanowicz, W., Krystufek, B., Reijnders, P. J. H., Spitzenberger, F., Stubbe, M., Thissen, J. B. M., Vohralik, V. & Zima, J. (1999). The atlas of European mammals, Vol 3. London: Academic Press.

Mossman, C. A. & Waser, P. M. (1999). Genetic detection of sex‐biased dispersal. Molecular Ecology, 8(6), 1063-1067. https://doi.org/10.1046/j.1365-294x.1999.00652.x

Murtagh, F. & Legendre, P. (2014). Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? Journal of classification, 31(3), 274-295. https://doi.org/10.1007/s00357-014-9161-z

Nikitović, J., Djan, M., Ćirović, D., Antić, M. & Šnjegota, D. (2023). The first report on genetic variability and population structure in jackals from Bosnia and Herzegovina. Mammal Research, 68(2), 243-247. https://doi.org/10.1007/s13364-022-00665-z

Peakall, R. O. D. & Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular ecology notes, 6(1), 288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

Pilot, M., Jedrzejewski, W., Branicki, W., Sidorovich, V. E., Jedrzejewska, B., Stachura, K. & Funk, S. M. (2006). Ecological factors influence population genetic structure of European grey wolves. Molecular ecology, 15(14), 4533-4553. https://doi.org/10.1111/j.1365-294X.2006.03110.x

Pritchard, J. K., Stephens, M. & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945-959. https://doi.org/10.1093/genetics/155.2.945

QGIS Geographic Information System (QGIS) (2018). Open Source Geospatial Foundation Project. https://qgis.org/

Rutkowski, R., Krofel, M., Giannatos, G., Ćirović, D., Männil, P., Volokh, A. M. & Bogdanowicz, W. (2015). A European concern? Genetic structure and expansion of golden jackals (Canis aureus) in Europe and the Caucasus. PLoS One, 10(11), e0141236. https://doi.org/10.1371/journal.pone.0141236

Sambrook, J. & Russell, D. W. (2001). Molecular Cloning: A Laboratory Manual (3rd ed., Vol. 1). New York: Cold Spring Harbor Laboratory Press.

Selimović, A., Scholl, E.M., Bosseler, L. & Hatlauf, J. (2021). Habitat use of golden jackals (Canis aureus) in riverine areas of northern Bosnia and Herzegovina. European Journal of Wildlife Resources, 67(1), 1-8. https://doi.org/10.1007/s10344-021-01457-7

Shirk, A. J., Schroeder, M. A., Robb, L. A. & Cushman, S. A. (2015). Empirical validation of landscape resistance models: insights from the Greater Sage-Grouse (Centrocercus urophasianus). Landscape Ecology, 30(10), 1837-1850. https://doi.org/10.1007/s10980-015-0214-4

Stronen, A. V., Konec, M., Boljte, B., Bošković, I., Gačić, D., Galov, A. & Potočnik, H. (2021). Population genetic structure in a rapidly expanding mesocarnivore: golden jackals in the Dinaric-Pannonian region. Global ecology and conservation, 28, e01707. https://doi.org/10.1016/j.gecco.2021.e01707

Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. & Shipley, P. (2004). MICRO‐CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular ecology notes, 4(3), 535-538. https://doi.org/10.1111/j.1471-8286.2004.00684.x

Yuen, K. K. (1974). The two-sample trimmed t for unequal population variances. Biometrika, 61(1), 165-170. https://doi.org/10.2307/2334299

Downloads

Published

2026-01-01

Issue

Section

Articles