BIOCHEMICAL RESPONSES OF PURE AND MIXED FUNGAL CULTURES ISOLATED FROM WASTE WATER TO THE PRESENCE OF SODIUM TRIPOLIPHOSPHATES
DOI:
https://doi.org/10.7251/SKP201101019JKeywords:
sodium tripolyphosphate, pH, redox potential, proteolytic activity, T. viride, G. candidum, mixed culturesAbstract
Sodium tripolyphosphate (STPP) has a wide application in different industrial processes but mainly as the builder in household cleaning products. The use of STPP has been associated with the environmental problem referred to as eutrophication. From the environmental point of view, it is important to identify microorganisms which have the ability to reduce STPP from environment. This paper investigated the chemical and biochemical responses of pure cultures Trichoderma viride and Geotrichum candidum and their mixed culture to the presence sodium tripolyphosphate (STPP) at 0.5% concentration during 8 days of cultivation in the growth liquid medium. For this purpose, the changes in the pH value, redox potential, proteolytic activity of liquid growth media and total dry weight biomass (DWB) of cultures were measured. The addition of STPP in growth medium affected the increase in initial pH values and decrease in redox potential values compared to the control. The STPP caused an inhibitory effect on protease activity of all fungal cultures in the following order: T. viride (3.60%), mixed culture (9.77%) and G. candidum (60.33%). The dry weight biomass (DWB) of T. viride was slightly inhibited (1.06%) whereas DWB of G. candidum (0.58%) and mixed culture (9.53%) were slightly and moderately stimulated by STPP. The results obtained in this study indicate a potential role of tested cultures in polyphosphates removal from industrial and waste water treatment plants and their potential application in the biotechnological processes.
References
Achbergerová, L. & Nahálka, J. (2011). Polyphosphate - an ancient energy source and active metabolic regulator. Microbial Cell Factories, 10(63), 1-14. doi:10.1186/1475-2859-10-63
Anson, M. L. (1938). The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. Journal of General Physiology, 22, 79-89. doi: 10.1085/jgp.22.1.79
Barak, Y. & Rijn, J. V. (2000). Relationship between Nitrite Reduction and Active Phosphate Uptake in the Phosphate-Accumulation Denitrifier Pseudomonas sp. Strain JR 12.1.551.601.651.701.751.801.851.90 Dry weight biomass (g) CultureT. viride CT. viride STPP 0.5%G. candidum CG. candidum STPP 0.5%Mixed culture CMixed culture STPP 0.5%Applied and Environment Microbiology, 66, 5236-5240. doi: 10.1128/aem.66.12.5236-5240.2000
Ekama, G. A., Marias, G. R., Siebritz, I. P., Pitman, A. R., Keay, G. P., Buchan, L., Gerber, A., Smollen, M. (1984). Theory, design and operation of nutrient removal activated sludge processes. Pretoria, South Africa: University of Cape Town, City of Johannesburg and the National Institute for Water Research of the CSIR.
Fuhs, G. W. & Chen, M. (1975). Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater. Microbial Ecology, 2, 119-138. doi: 10.1007/BF02010434
Hamilton, J. G., Grosskleg, J., Hilger, D., Bradshaw, K., Carlson, T., Siciliano, S. D., Peak, D. (2018). Chemical speciation and fate of tripolyphosphate after application to a calcareous soil. Geochemical Transaction, 19, 1-11. doi: 10.1186/s12932-017-0046-z
HERA, Human & Environmental Risk Assessment on ingredients of European household cleaning products (2003). Sodium Tripolyphosphate (STPP) (CAS: 7758-29-4). Retrieved from: https://www.heraproject.com/files/13-f-04-%20hera%20stpp%20full%20web%20wd.pdf
Jakovljević, V. (2020). Synergistic effect of Fusarium lateritium LP7 and Trichoderma viride LP5 promotes ethoxylatedoleyl-cetyl alcohol biodegradation. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 55, 438-447. doi:10.1080/10934529.2019.1706334
Jeon, C. O., Lee, D. S. & Parker, J. M. (2003). Microbial communities in activated sludge performing enhanced biological phosphorus removal in sequencing batch reactor. Water Research, 37, 2115-2205. doi:10.1016/S0043-1354(02)00587-0
Jiang, Y. F., Tian, J. & Ge, F. (2020). New insight into carboxylic acid metabolisms and ph regulations during insoluble phosphate solubilisation process by Penicillium oxalicum PSF-4. Current Microbiology, 77, 4095–4103. doi: 10.1007/s00284-020-02238-2.
Kavanaugh, R. G. (1991). Investigation of bacterial populations in a biological nutrient removal system (PhD Dissertation). Virginia, USA: Department of Civil Engineering, Virginia Tech, Blacksburg. Retrieved from: https://vtechworks.lib.vt.edu/bitstream/handle/10919/39828/LD5655.V856_1991.K383.pdf?sequence=1&isAllowed=y
Knabel, S., Walker, H. & Harman, P. (1991). Inhibition of Aspergillus flavus and selected gram-positive bacteria by chelation of essential metal cations by polyphosphates. Journal of Food Protection, 54, 360–365. doi:10.4315/0362-028X-54.5.360
Lima, M. A. B., Nascimento, A. E., Souza, W., Fukushima, K. & Campos-Takaki, G. M. (2003). Effects of phosphorus on polyphosphate accumulation by Cunninghamella elegans. Brazilian Journal of Microbiology, 34, 363-372. doi:10.1590/S1517-83822003000400016
Maier, S. K., Scherer, S. & Loessner, M. J. (1999). Long-chain polyphosphate causes cell lysis and inhibits Bacillus cereus septum formation, which is dependent on divalent cations. Applied and Environment Microbiology, 65, 3942–3949. doi:10.1128/AEM.65.9.3942-3949.1999.
Marsh, S. L. K. (1992). Effects of phosphates on Pseudomonas fragi growth, protease production and activity (Retrospective Theses and Dissertations, 10331), Iowa State:University Capstones. Retrieved from: https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=11330&context=rtd
Momba, M. N. B. & Cloete, T. E. (1996). Biomass relationship to growth and phosphate uptake of Pseudomonas fluorescens, Escherichia coli and Acinetobacter radioresistens in mixed liquor medium. Journal of Industrial Microbiology, 16, 364-369. doi: 10.1007/BF01570117
Oehmen, A., Lemos, P. C., Carvalho, G., Yuan, Z., Keler, J., Blackall, L. L. & Reis, A. M. M. (2007). Advances in enhanced biological phosphorus: from micro to macro scale. Water Research, 41, 2271-2300. doi:10.1016/j.watres.2007.02.030
Petersen, G. K. (1966). Redox measurements: Their Theory and Technique. Copenhagen, Denmark: Radiometer A/S.
Post, F. J., Krishnamurty, G. B. & Flanagan, M. D. (1963). Influence of sodium hexametaphosphate on selected bacteria. Applied Microbiology, 11, 430–435. doi:10.1128/am.11.5.430-435.1963.
Rashid, M. H. & Kornberg, A. (2000). Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. PNAS (Proceedings of the National Academy of Sciences USA), 97(9), 4885-4890. doi:10.1073/pnas.060030097
Rashid, M. H., Rao, N. N. & Kornberg, A. (2000). Inorganic polyphosphate is required for motility of bacterial pathogens. Journal of Bacteriology, 182, 225-227. doi:10.1128/JB.182.1.225-227.2000
Seviour, R. J., Mino, T. & Onuki, M. (2003).The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiology Reviews, 27(1), 99-127. doi:10.1016/S0168-6445(03)00021-4
Shi, X., Yang, L., Niu, X., Xiao, L., Kong, Z., Qin, B., Gao, G. (2003). Intracellular phosphorus metabolism of Microcystis aeruginosa under various redox potential in darkness. Microbiology Research, 158, 345–352. doi: 10.1078/0944-5013-00214
Snaidr, J., Amann, R., Huber, I., Ludwig, W. & Schleifer, K. H. (1997). Phylogenetic analysis and in situ identification of bacteria in activated sludge. Applied and Environmental Microbiology, 67, 2884-2896. Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC168584/pdf/632884.pdf
Venugopal, V., Pansare, A. C. & Lewis, N. F. (1984). Inhibitory Effect of Food Preservatives on Protease Secretion by Aeromonas hydrophila. Journal of Food Science, 49, 1078-1081. doi:10.1111/j.1365-2621.1984.tb10396.x
Weitzman, I., Whittier, S., Mckitrick, J. C. & Della-Latta, P. (1995). Zygospore: the last word in identification of rare and atypical zygomycetes isolated from animal specimens. Journal of Clinical Microbiology, 33, 781-783. doi:10.1128/jcm.33.3.781-783.1995
Zaika, L. & Kim, A. (1993). Effect of sodium polyphosphates on growth of Listeria monocytogenes. Journal of Food Protection, 56, 577–580. doi:10.4315/0362-028X-56.7.577